Stochastic models of streamflow: some case studies
نویسندگان
چکیده
Ten candidate models of the Auto-Regressive Moving Average (ARMA) family are investigated for representing and forecasting monthly and ten-day streamflow in three Indian rivers. The best models for forecasting and representation of data are selected by using the criteria of Minimum Mean Square Error (MMSE) and Maximum Likelihood (ML) respectively. The selected models are validated for significance of the residual mean, significance of the periodicities in the residuals and significance of the correlation in the residuals. The models selected, based on the ML criterion for the synthetic generation of the three monthly series of the Rivers Cauvery, Hemavathy and Malaprabha, are respectively AR(4), ARMA(2,1) and ARMA(3,1). For the ten-day series of the Malaprabha River, the AR(4) model is selected. The AR(1) model resulted in the minimum mean square error in all the cases studied and is recommended for use in forecasting flows one time step ahead. Modèles stochastiques de l'écoulement quelques études de cas Résumé Dix modèles test de la famille ARMA ont été examinés pour représenter et prévoir les débits mensuels et décadaires de trois rivières Indiennes. Les meilleurs modèles pour prévoir et représenter les données ont été choisis en utilisant respectivement le critère du Moindre Carré (MMCE) et le Maximum de Probabilité (MP). Les modèles choisis ont été validés pour la signification de la moyenne résiduelle, la signification des périodicités dans les résidus et la signification de la corrélation dans les résidus. Les modèles choisis basés sur le critère du MP pour la production synthétique de séries de débits de trois mois des rivières Kaveri, Hemavathi et Malaprabha sont respectivement AR(4), ARMA(2,1) et ARMA(3,1). Pour les séries décadaires de la rivière Malaprabha, le modèle AR(4) a été choisi. Le modèle AR(1) a conduit à la valeur minimale de moyenne quadratique dans tous les cas étudiés et on le recommande en prévoyant les débits avec un pas de temps en avance. *now with the Department of Civil Engineering, Indian Institute of Technology, Bombay 400 076, India. Open for discussion until 1 February 1991 395 P. P. Mujumdar & D. Nagesh Kumar 396
منابع مشابه
The Optimization of Energy Supply Systems by Sequential Streamflow Routing Method and Invasive Weed Optimization Algorithm; Case Study: Karun II Hydroelectric Power Plant
Among the major sources of energy supply systems, hydroelectric power plants are more common. Energy supply during peak hours and less environmental issues are some of the most important advantages of hydroelectric power plants. In this study, designing parameters to supply maximum amount of energy was determined by using the simulation-optimization perspective and combination of IWO-WEAP model...
متن کاملDetection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions
The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...
متن کاملApplication of Stochastic Optimal Control, Game Theory and Information Fusion for Cyber Defense Modelling
The present paper addresses an effective cyber defense model by applying information fusion based game theoretical approaches. In the present paper, we are trying to improve previous models by applying stochastic optimal control and robust optimization techniques. Jump processes are applied to model different and complex situations in cyber games. Applying jump processes we propose some m...
متن کاملEvaluation of SARIMA time series models in monthly streamflow estimation in Idanak hydrometry station
prediction of hydrological variables is a highly effective tool in water resource management. One of the important tools for modeling hydrological processes is the use of time series modeling and analysis. River series production series can be used by time series models in various studies such as drought, flood, reservoir systems design and many other purposes For this purpose, monthly flow dat...
متن کاملDisaggregation procedures for stochastic hydrology based on nonparametric density estimation
Synthetic simulation of streamflow sequences is important for the analysis of water supply reliability. Disaggregation models are an important component of the stochastic streamflow generation methodology. They provide the ability to simulate multiseason and multisite streamflow sequences that preserve statistical properties at multiple timescales or space scales. In recent papers we have sugge...
متن کاملStochastic Methods for Modeling Precipitation and Streamflow
Stochastic simulation and forecasting of hydroclimatic processes, such as precipitation and streamflow, are vital tools for risk-based management of water resources systems. Stochastic hydrology has a long and rich history in this area. The traditional approaches have been based on mathematical models with assumed or derived structure representing the underlying mechanisms and processes involve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1990